Liver-specific expression of dominant-negative transcription factor 7-like 2 causes progressive impairment in glucose homeostasis.
نویسندگان
چکیده
Investigations on the metabolic role of the Wnt signaling pathway and hepatic transcription factor 7-like 2 (TCF7L2) have generated opposing views. While some studies demonstrated a repressive effect of TCF7L2 on hepatic gluconeogenesis, a recent study using liver-specific Tcf7l2(-/-) mice suggested the opposite. As a consequence of redundant and bidirectional actions of transcription factor (TCF) molecules and other complexities of the Wnt pathway, knockout of a single Wnt pathway component may not effectively reveal a complete metabolic picture of this pathway. To address this, we generated the liver-specific dominant-negative (DN) TCF7L2 (TCF7L2DN) transgenic mouse model LTCFDN. These mice exhibited progressive impairment in response to pyruvate challenge. Importantly, LTCFDN hepatocytes displayed elevated gluconeogenic gene expression, gluconeogenesis, and loss of Wnt-3a-mediated repression of gluconeogenesis. In C57BL/6 hepatocytes, adenovirus-mediated expression of TCF7L2DN, but not wild-type TCF7L2, increased gluconeogenesis and gluconeogenic gene expression. Our further mechanistic exploration suggests that TCF7L2DN-mediated inhibition of Wnt signaling causes preferential interaction of β-catenin (β-cat) with FoxO1 and increased binding of β-cat/FoxO1 to the Pck1 FoxO binding site, resulting in the stimulation of Pck1 expression and increased gluconeogenesis. Together, our results using TCF7L2DN as a unique tool revealed that the Wnt signaling pathway and its effector β-cat/TCF serve a beneficial role in suppressing hepatic gluconeogenesis.
منابع مشابه
The expression of dominant negative TCF7L2 in pancreatic beta cells during the embryonic stage causes impaired glucose homeostasis
OBJECTIVE Disruption of TCF7L2 in mouse pancreatic β-cells has generated different outcomes in several investigations. Here we aim to clarify role of β-cell TCF7L2 and Wnt signaling using a functional-knockdown approach. METHODS Adenovirus-mediated dominant negative TCF7L2 (TCF7L2DN) expression was conducted in Ins-1 cells. The fusion gene in which TCF7L2DN expression is driven by P TRE3G was...
متن کاملThe Effect of 6 Week Resistance Training Program on Foxo1 Expression in Liver Cells and Glucose and Insulin Levels in Type 2 Diabetic Rats
Background & objectives: Foxo1 is a transcription factor in insulin signaling in the liver. The function of Foxo1 is important in the ability of insulin to regulate hepatic glucose production and glucose homeostasis. The aim of this study was to determine the effect of resistance training program on Foxo1 expression in liver cells as well as glucose and insulin serum levels in male Wistar rat...
متن کاملExpression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells
Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...
متن کاملFoxa2 (HNF3beta ) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release.
The transcription factor Foxa2 is implicated in blood glucose homeostasis. Conditional expression of Foxa2 or its dominant-negative mutant DN-Foxa2 in INS-1 cells reveals that Foxa2 regulates the expression of genes important for glucose sensing in pancreatic beta-cells. Overexpression of Foxa2 results in blunted glucose-stimulated insulin secretion, whereas induction of DN-Foxa2 causes a left ...
متن کاملDiabetes Risk Gene and Wnt Effector Tcf7l2/TCF4 Controls Hepatic Response to Perinatal and Adult Metabolic Demand
Most studies on TCF7L2 SNP variants in the pathogenesis of type 2 diabetes (T2D) focus on a role of the encoded transcription factor TCF4 in β cells. Here, a mouse genetics approach shows that removal of TCF4 from β cells does not affect their function, whereas manipulating TCF4 levels in the liver has major effects on metabolism. In Tcf7l2(-/-) mice, the immediate postnatal surge in liver meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 64 6 شماره
صفحات -
تاریخ انتشار 2015